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We report on the reinforcement of superconductivity in a system consisting of a narrow superconducting
wire weakly coupled to a diffusive metallic film. We analyze the effective phase-only action of the system by
a perturbative renormalization group and a self-consistent variational approach to obtain the critical points and
phases at T=0. We predict a quantum phase transition toward a superconducting phase with long-range order
as a function of the wire stiffness and coupling to the metal. We discuss implications for the dc resistivity of
the wire.
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I. INTRODUCTION

The interplay between fluctuation and dissipation phe-
nomena in quantum systems is presently under intensive re-
search. Fluctuations are particularly strong in low dimen-
sions, as reflected by the lack of long-range order in one-
dimensional �1D� systems with short-range interactions.1,2

On the other hand, dissipation counteracts fluctuations ef-
fects, decreasing the lower critical dimension.3–6

Some physical realizations of dissipative low-dimensional
systems are the well-known resistively shunted Josephson
junctions arrays, where the effect of local ohmic dissipation
has been intensively studied,7–11 superconducting grains em-
bedded in metallic films,12–15 and Luttinger liquids coupled
to dissipative baths.16–18

Narrow superconducting wires with diameter d��0
�where �0 is the bulk superconducting coherence length� are
low-dimensional systems in which strong fluctuations of the
order parameter affect low-temperature properties.

It was originally suggested by Little,19 and subsequently
discussed by Langer and Ambegaokar �LA� �Ref. 20� and
McCumber and Halperin �MH� �Ref. 21� that resistivity ��T�
in thin wires would be finite for all temperatures below the
bulk critical temperature Tc. Thermal fluctuations cause the
magnitude of the order parameter to temporarily vanish at
some point along the wire, allowing its phase to slip by 2�
�the so-called thermally activated phase slips� and dissipate

through the Josephson relation V=� /2e ��̇, where �� is the
phase difference across the wire.

According to the LA-MH theory, thermal fluctuations in-
duce a resistivity ��T����T�exp�−�F0 /T�, where �F0 is
the Ginzburg-Landau free-energy barrier between different
current-carrying states in the wire and ��T� is an algebra-
ically decreasing function of T. However, deviations from
the LA-MH theory in the regime T�Tc were first observed
by Giordano22,23 and more recently by other experimental
groups,24–28 leading to the conclusion that for very thin wires
at low temperatures current decay was produced by macro-
scopic quantum tunneling of the phase of the order parameter
through the same free-energy barriers �the so-called quantum
phase slips�, leading to a much weaker dependence of the
resistivity on T.

Moreover, it is believed that the destruction of the super-
conducting state in very thin wires occurs through the pro-
liferation of quantum phase slips/antiphase slips
pairs,23,24,27,29–33 in what constitutes the quantum analog in
1+1 dimensions to the classical Berezinskii-Kosterlitz-
Thouless �BKT� �Ref. 34� transition in two dimensions �2D�.

Contrary to other 1D systems such as dissipative ohmic
Josephson-junction arrays, isolated thin wires do not present
significant sources of dissipation at T�Tc.

30,33 However, ad-
ditional sources might be provided by a coupling to the en-
vironment, a possibility which has hardly been explored yet.
Although general theoretical frameworks have been pro-
posed to describe superconductor-normal �SN�
junctions,13,35,36 recent advances in superconducting nano-
wires fabrication techniques call for a more detailed analysis
of the effects of coupling to general dissipation
sources.22–24,27,31

In this paper we focus on the effect of weakly coupling a
superconducting wire to a diffusive 2D normal metal. We
show how the induced dissipation stabilizes superconductive
long-range order at T=0 despite the 1D nature of the wire. At
finite T, the effect of dissipation are manifested in an in-
crease in the superconductive stiffness of the wire.

The paper is organized as follows: in Sec. II we derive the
effective low-energy phase-only action of the coupled sys-
tem. Section III is devoted to the analysis of this model

FIG. 1. �Color online� Representation of the system. At T�Tc

one-particle hopping is suppressed by the BCS gap-energy �0. At
next order in the hopping process, Cooper pairs can tunnel into the
metal and propagate coherently in a length �N, generating an effec-
tive coupling �cos���r�−��r��� in the wire.
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within a perturbative renormalization group �RG� and a self-
consistent harmonic approximation and discuss implications
for the dc resistivity. Finally, in Sec. IV we discuss the main
physical consequences of our results and summarize them.

II. MODEL

We analyze the system depicted in Fig. 1, which repre-
sents a clean superconducting wire of length L and lateral
dimensions d��0, weakly coupled to a diffusive 2D metal.
In the following we use the convention �=kB=1. We begin
our description with the action of the microscopic BCS
Hamiltonian for the isolated wire

Sw = �
0

	

d
� d3R�
�

��̄���
 − 
��� +
���̄�������

2m
	

+ U�
0

	

d
� d3R�̄↑�̄↓�↓�↑. �1�

Here the fermionic field ��
���R ,
� describes an electron
in the wire with spin projection � at position R
�x ,y ,z� and
imaginary time 
. The chemical potential 
=kF

2 /2m is the
Fermi energy in the normal state and the local attractive in-
teraction U�0 is responsible for pairing at T�Tc.

Assuming for simplicity that the coupling to the metallic
film takes place along the line �x ,0 ,0� in the wire, the cou-
pling term is described by

S� = t��
0

	

d
� dx�
�

��̄��x,
����x,
� + H.c.� , �2�

where the fermionic field ���r ,
� represents an electron at
position r
�x ,y� in the film. Here the compact notations
���x ,
�
���R ,
� �y=z=0 and ���x ,
�
���r ,
� �y=0 have
been used. While certainly more realistic models for the cou-
pling, which take into account geometrical details of the SN
junction have been studied,13,35,36 the main physics which is
of interest to us is already captured by Eq. �2�.

Electronic motion in the metallic film is described by the
noninteracting action

S2D = �
0

	

d
� d2r�
�
��̄���
 − 
2D��� +

���̄�������
2m

+ V�r��̄��r����r�	 , �3�

where V�r� is the �static� disorder potential. We assume weak
enough disorder, such that the localization length in the film
is �loc�L, allowing us to neglect strong localization effects.

For one given realization of the disorder potential V�r�,
the effective action in the wire is obtained by integrating the
electronic degrees of freedom in the metallic film

Sw
eff = Sw + Sdiss,

Sdiss = − t�
2 �

0

	

d
d
�� dxdx�

��
�

�̄��x,
�g2D�x,x�;
 − 
�����x�,
�� ,

where g2D�r ,r� ;
−
�� is the Green’s function in the film.
Note that the spin index has been dropped using the SU�2�
symmetry of the problem and that we used the notation
g2D�x ,x� ;
−
��
g2D�r ,r� ;
−
�� �y=y�=0.

Since the disorder potential breaks the original translation
invariance in the wire, an average over different configura-
tions of the disorder is needed to restore it. Let us define the
partition function of the systems for one disorder realization
as

Z�V� 
 � D���e−Sw−Sdiss,

Assuming for convenience that V�r� is Gaussian distributed

Sd =
1

2V2� d2rV2�r� ,

we can formally perform the average over different disorder
configurations as

Z =
�D�V�e−SdZ�V�

�D�V�e−Sd
.

Expansion of Z�V� in powers of t� allows us to obtain an
explicit form of the partition function Z

Z =

�D�V�e−Sd�D���e−Sw �
n=0

� 1

n!
Sdiss

n

� D�V�e−Sd

,

=� D���e−Sw�
n=0

�
1

n!

Sdiss

n �d. �4�

The low-energy effective action of this model is obtained by
introducing Hubbard-Stratonovich fields ��R ,
� ,���R ,
� in
the particle-particle channel to decouple the quartic term in
Sw.30,33,37,38 After integration of the fermionic degrees of
freedom in the wire, the action reads

Sw��̄,�� = − Tr ln gw
−1 −

1

U
�

0

	

d
� d3R���R,
��2, �5�

where

gw
−1 
 ��
 − 
 −

�2

2m
��R,
�

�̄�R,
� �
 + 
 +
�2

2m
�

and where the Nambu notation
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��R,
� = ��↑�R,
�

�̄↓�R,
�
�

is implicit. The Green’s function in the wire formally reads

gw�R,
� 
 �g�R,
� f�R,
�

f̄�R,
� ḡ�R,
� � ,

where g�R ,
�

T
��R ,
��̄�0�� and ḡ�R ,
�


T
�̄�R ,
���0�� denote, respectively, the particle and hole
propagators in the wire while f�R ,
�

T
��R ,
���0�� and

f̄�R ,
�

T
�̄�R ,
��̄�0�� are the anomalous ones.39

For very narrow wires with diameter d��0 at low ener-

gies, the dependence of the fields �̄�R ,
� ,��R ,
� on trans-
verse dimensions can be neglected, reducing to ��R ,
�
→��x� where the compact notation x= �x ,
� has been used.
Moreover, at T�TMF �where TMF is the mean-field critical
temperature of Eq. �5�� and neglecting amplitude fluctua-
tions, the dynamical state of the wire is characterized by
��x�=�0ei��x�, where the quantity �0 corresponds to the
�temperature-dependent� BCS energy gap and ��x� is the
space-dependent and time-dependent phase of the macro-
scopic BCS wave function.

The derivation of the phase-only action in the isolated
wire �i.e., the first term in the expansion of Eq. �4�� is ob-
tained by the means of an expansion in Gaussian fluctuations
in the gradients of the field ��x� around the BCS saddle point
and takes the form of a Luttinger liquid action2,30,33,37,40

S0 =� dx�− i��
� +
uK

2�
����2 +

u

2�K
����2� . �6�

Here �
��x� is the momentum canonically conjugate to
��x�, formally defined through the relation ���x� ,��x���
= i��x−x�� and representing fluctuations in the density of
Cooper pairs at point x. The operator � denotes derivation
with respect to the spatial coordinate x. The Luttinger liquid
parameters u and K are defined as2,30

u 
�Awns�T�
4m��T�

,

K 
 2��Awns�T���T�
4m

,

where
ns�T�
4m is the superconducting stiffness of the wire �with

ns�T� the three-dimensional density of electrons in the con-
densate and m their mass�, Aw is the cross-sectional area of
the wire, and ��T� is the compressibility �cf. Ref. 30 for
more details�. u corresponds to the velocity of the plasma
�Mooij-Schön41� mode. In the following, we assume the wire
to be in the thermodynamic limit L�LT=u /T.

The next terms in the expansion of the partition function
�Eq. �4�� provide the effects of the coupling to the metallic
film. At order O�t�

2 � and at low temperatures �T�TMF�, the
transfer of individual electrons is strongly forbidden by the
energy gap �0, giving a probability �e−�0/T for such a
charge-transfer channel.

The most relevant contribution of the coupling to the me-
tallic film appears at order O�t�

4 � and corresponds to the
Andreev reflection occurring at SN interfaces.12,13,35,36,42

This contribution physically represents processes in which
paired electrons �for which there is no energy cost� are ef-
fectively transferred from the wire to the film and vice
versa42

SA =
1

2

Sdiss

2 � = 2t�
4 �� dx�f�x���2

�� dxdx�Pc�x − x��cos���x� − ��x��� , �7�

where f�x�= f�R ,
� �y=z=0. The kernel Pc�x�= Pc�r ,
� �y=0 is
the cooperon propagator in the diffusive film, defined as42,43

Pc�r − r�,
 − 
�� 
 
g2D�r,r�,
 − 
��g2D�r,r�,
 − 
���d,

�8�

representing the probability to find a coherent electron pair
traveling a distance �r−r�� in the interval 
−
� through the
disordered film43 �see Fig. 1�. The diffusive propagation of
this electron pair remains phase coherent over a length �N
�assumed ��0� which depends on T, magnetic field, and the
strength of Coulomb interactions.43 In the absence of the
latter, �N�T���D

T , which leads to important nonlocal cou-
pling effects at low enough temperatures.

Explicit evaluation of Eq. �8� for a diffusive 2D metal,
assuming a Fermi-liquid description, yields �see Appendix�

Pc�r,
� �
�2D

2�2D
P̃c�r,
� , �9�

where we have defined

P̃c�r,
� = Re� exp�−
r

�N
+

ir2

4D
̃
�


̃2 ��0,
ir2

4D
̃
�� .

Here ��a ,z� is the incomplete gamma function and 
̃


+ i
e, with 
e the elastic lifetime of electrons in the diffusive
film.43 Equation �9� is a valid expression for 
�
e and x
� le, where le is the elastic mean-free path in the film. In
what follows, we set y=0 and consider the kernel as depend-
ing only on the coordinate x.

The coherence length �N�T� separates two distance re-
gimes of interest: �a� the local regime x��N�T�, where the
cooperon can be considered local in space, reducing to

P̃c�x� �
�N��x�


2 ln�4D


�N
2 �

consistent with the expression for the Andreev conductance
in Refs. 35. Introducing the notation q
�k ,�m�, where �m is
the bosonic Matsubara frequency �m=2�mT, the approxi-
mated Fourier transform �neglecting the logarithm� is inde-
pendent of k for k��N

−1 and reads

P̃c�q� � 2�N� 1


e
− ���m��

in the limit q→0.
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�b� The nonlocal regime of distances x��N�T�, where Eq.
�9� can be approximated as

P̃c�x� �
�4D�2

x4 + �4D
�2 �10�

with Fourier transform

P̃c�q� � 2�2�D���


e
− 2�Dk2 + ��m��

for q→0.
It is convenient to introduce the normal-state tunnel con-

ductance per unit of length in the SN junction44

Gt = � h

2e2�� 1

2�
�2

t�
2 �w�w�2DA2D

L
,

where �w��2D� is the normal-state local density of states in
the wire �film� and �w �A2D� is the volume of the wire �area
of the film�. Replacing the expression of the cooperon ap-
pearing in Eq. �9� and noting that the resistivity in a 2D film
is �2D= �e2 n2D

m 
e�−1= �e2�2DD�−1, we can express Eq. �7� as

SA =
GA

�0
2 � dxdx�P̃c�x − x��cos���x� − ��x��� , �11�

where GA is the dimensionless Andreev conductance in the
SN junction35,36

GA = � 1

2�
�4

4e2Gt
2�2D.

In addition to the term SA of Eq. �7�, the coupling t� gener-
ates contributions O�t�

2 � and O�t�
4 � at scales x��0 and 


��0u−1, which renormalize the bare Luttinger parameters K
and u of Eq. �6� �e.g., diffuson propagator43�. Although these
contributions do not change the physics at a qualitative level,
their effect is relevant for the comparison with real systems.
A microscopic study of the dependence of K and u on the
hopping t�, as well as further renormalization arising from
Coulomb interactions between the wire and the film, is be-
yond the scope of the present paper and will be given
elsewhere.45 In the following we assume that the Luttinger
parameters appearing in Eq. �6� already include all these cor-
rections. Note also that the coupling to the metal modifies the
bare value of �0 through the well-known proximity effect in
which the diffusion of normal electrons in the supercon-
ductor produce a lowering of Tc.

46 However, since this is a
small effect of order O�t�

4 � and in addition we assume T
�Tc, this effect is irrelevant to our description and can be
effectively taken into account in renormalized values of �0
and Tc.

So far we have not included the effects of topological
defects �phase slips� in the wire. As discussed in Sec. I, these
topological excitations produce finite resistivity at T�Tc and
are believed to be the origin of destruction of superconduc-
tivity in narrow wires30,33 and in dissipative Josepshon junc-
tions arrays.10,11 It can be shown2 that defining a field ��x�,
such that ���x�
���x�, the generation of topological de-
fects in the field ��x� can be described by a term

Sps = − �
n=1

�
�ps

n u

�0
2 � dx cos�2n��x�� , �12�

where �ps=exp�−Score� is the “fugacity” of a phase slip and
Score is the action associated with the creation of a single
phase slip.30,33 The term cos�2n��x�� represents the creation
of a kink of value 2�n in the � field at the space-time point
x. Assuming that �ps�1, we can neglect in the following
contributions with n�1 in Sps.

Adding Eqs. �6�, �11�, and �12� we finally arrive at the
expression of the effective phase-only action at low tempera-
tures

S = S0 + SA + Sps, �13�

describing on an equal footing the effects of fluctuation, dis-
sipation, and topological excitations.

III. RESULTS

A. Renormalization-group analysis

To study the properties of the model of Eq. �13� at T=0,
we perform a RG analysis which is perturbative in the cou-
plings GA and �ps. At lowest possible order, the RG equa-
tions are found by performing one-loop and two-loop correc-
tions in SA and Sps, respectively.

We adopt a renormalization procedure that rescales space
and time homogeneously, so as to preserve the Lorentz in-
variance of S0. The renormalization of SA involves a projec-
tion onto the most relevant sector of the coupling kernel

P̃c�x�, which is very anisotropic in space and time, obeying a
functional RG flow in the general case. We can simplify the
analysis by studying different scales of interest in the renor-
malization procedure. Depending on the final scale ��l�
�L−1 �where ��l�=�0el is the renormalized momentum cut-
off and where �0

−1=�0�, we focus on the local part of the
cooperon for ��l���N

−1 or on the nonlocal, diffusive proper-
ties for ��l���N

−1.
We can motivate the RG analysis in the nonlocal regime

by noting that the kernel P̃c�x� induce Josephson coupling of
phases over spatial distances W�
���D
. Indeed, an effec-

tive purely local kernel P̃c
eff�x� can be obtained by integrating

the spatial coordinate in Eq. �10�, yielding at long times

P̃c
eff�x� � 
−2W�
���x� for 
 � D/u2. �14�

This approximate form is simpler to analyze and yields a
scaling dimension 3

2 . Note that this long-range temporal 
−3/2

differs from the standard local ohmic coupling 
−2 coupling7

and further quenches fluctuations of the phase. A more de-
tailed functional RG procedure involves an expansion of

P̃c�x� in terms of Legendre polynomials and allows to extract

the scaling dimension of P̃c in the nonlocal limit in a sys-
tematic way �cf. Appendix�. Using that 
cos���x�−��0���
�r−1/2K for r→� �cf. Ref. 2�, we conclude that the scaling
dimension of the perturbative term SA is 3

2 − 1
2K .

In the local regime and for �̃ps=0, our the RG analysis
reduces to that obtained in Ref. 17, where details of their
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derivation can be found. In this case, the scaling analysis of

SA is simpler to obtain since in this limit P̃c�x� is RG invari-
ant, yielding a scaling dimension of 1− 1

2K .
We obtain the flow equations

dK�l�
dl

= G̃A�l� − �̃ps
2 �l�K3�l� , �15�

du�l�
dl

= G̃A�l�
u�l�
K�l�

B�x� − B�
�

B�x� + B�
� , �16�

dG̃A�l�
dl

= ��1 −
1

2K�l��G̃A�l� �local� ,

�3

2
−

1

2K�l��G̃A�l� �nonlocal� ,� �17�

d�̃ps�l�
dl

= �2 − K�l���̃ps�l� , �18�

where we have defined the dimensionless couplings G̃A


GA��B�x�+B�
�� and �̃ps
�ps
�A for convenience. The di-

mensionless quantities A and B�x,
� are nonuniversal and arise
from the renormalization of Sps and SA, respectively, at scales
�x ,u
���−1�l� and are defined as

A 

1

4�
�

�−1�l�

�

dr̃r̃3e−2KF��r̃�F��r̃� ,

B�x� 

1

2

1

�2�l�u2�
0

2�

d�P̃c„�
−1�l�,�…cos2 � ,

B�
� 

1

2

1

�2�l�u2�
0

2�

d�P̃c„�
−1�l�,�…sin2 � ,

where r̃
��l��x2+ �u
�2 and F��x�= 1
2 ln r̃, and where P̃c

has been expressed in cylindrical coordinates �cf. Eq. �A8��.
It is interesting to point out that while only one parameter A
arises in the rescaling of Sps due to space-time isotropy, the
anisotropy of SA generates different parameters B�x� and B�
�.

Note that in the local regime �P̃c� P̃c�
��, the product uK
does not renormalize for �ps=0 and thus B�x�=0. Nonlocality
is thus captured by a B�x��0. Further, since the term SA
breaks the space-time isotropy within our Lorentz-invariant
RG analysis �i.e., momentum shell integration homogeneous
in space time�, we expect a renormalization of the velocity
u�l�, cf. Eq. �16�. A numerical evaluation gives B�x� /B�
��1,
meaning that u�l� flows toward smaller values.

As for Eq. �18�, we note that it corresponds to the usual
BKT flow equation �cf. Ref. 30 for a derivation in the con-

text of superconducting wires�. In the limit �G̃A�l� , �̃ps�l��
→0, the properties of the system are dominated by the value
of K�l�. From Eqs. �17� and �18�, we can define the critical
values KA

� 
 1
2 �
 1

3 � for the local �nonlocal� regime and Kps
�


2. For �̃ps=0 and K�KA
� , the coupling G̃A�l� flows toward

strong coupling and eventually the perturbative RG analysis

is no longer valid. On the other hand, for G̃A=0 and K

�Kps
� the coupling �̃ps�l� becomes relevant and eventually

superconductivity is destroyed in the wire, due to the unbind-
ing of pairs of topological excitations.2,30 Note that it is not
possible to determine the nature of the T=0 fixed point in
this regime within our formalism. This issue is currently un-
der intensive research.33 Therefore, at T=0 and when neither

G̃A nor �̃ps vanish, the Luttinger liquid phase is never stable
and the ground state is determined by a competition between
SA and Sps.

B. Self-consistent Harmonic approximation

To further investigate the properties in the regime where

G̃A is the dominant parameter that flows to strong coupling,
we used a self-consistent variational approach, the so-called
self-consistent harmonic approximation.2,47 This method
consists in finding the optimal propagator gtr�q� of a har-
monic �Gaussian� trial action

Str��� =
1

2	L
�

q

1

gtr�q�
���q��2

that minimizes the variational free energy

Fvar = Ftr + T
S − Str�tr,

where

Ftr = − T ln� D�e−Str���.

The minimization of the free-energy Fvar with respect to
gtr�q� yields a self-consistent equation for gtr�q�

gtr
−1�q� = g0

−1�q� −
2GA

�0
2 � dx�cos�qx� − 1�

�P̃c�x�exp�−
1

	L
�
q�

�1 − cos�q�x��gtr�q��	 ,

�19�

where g0
−1�q�
 K

�u�m
2 + uK

� k2 is the propagator in the Luttinger
liquid phase. The solutions of Eq. �19� read

gtr
−1�q� = � g0

−1�q� + ���m� �local� ,

g0
−1�q� + ��Dk2 + ��m� �nonlocal� .

	 �20�

The parameter � is found self-consistently for the general
case but in the limit GA→0 it reduces to

�

=��2�GA�N exp� �

2K
�

�0
2 �

2K/2K−1

���0

4K
�1/2K−1 �local� ,

�8�2GA
�D

�0
2 �3K/3K−1� ��0

3u

4K�D3�1/3K−1

�nonlocal� .�
Note that physical solutions of the Eq. �19� with ��0 are
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found only for K�KA
� , confirming the results of the RG

analysis. In the context of the variational approach, it be-
comes clear �cf. Eq. �20�� that the contribution of the coop-
eron propagator of Eq. �11� induces ohmic �nonohmic� dis-
sipation in the local �nonlocal� regime. Evaluation of the
phase-correlation function at T=0 with the optimal gtr�q� of
Eq. �20� yields in the long-wavelength limit


ei��x�−i��0��

ei��2 ��1 +

1
���

1

x +�8uK

��



�local� ,

1 +
2�D

��2

1

x2 + 4D

�nonlocal� ,�

�21�

where 
ei�� is the value of the superconducting order param-
eter


ei�� = � ���0�

4K
�1/4K

�local� ,

� ��0
3u�

4K�D3�1/6K

�nonlocal� .� �22�

This result indicates that the order parameter develops long-
range order and should be compared with the case of isolated
wires, where superconducting correlation functions follow a
power-law behavior and 
ei��=0 as a consequence of the
strong quantum fluctuations.1

C. dc transport properties

Now we address the experimentally relevant question of
the possibility to observe some signatures of our predictions
at T=0. To that end, we turn our attention to transport prop-
erties and calculate the dc resistivity. We use the theoretical
framework of the memory matrix, which is perturbative in
the processes that degrade the current-density operator2,29,48

J�x� =
uK

�

2e

c
� ��x� .

Current decay originated by phase slips induce finite resis-
tivity at T�Tc. At very low temperatures T�Tc thermally
activated phase slips are suppressed and resistivity is domi-
nated by quantum phase slips processes. In the absence of
dissipation �GA=0�, its expression is well known and
reads29,30

��T� �
4�3�̃ps

2 �0

�2e

c
�2 B2�K

2
,1 − K�cos2��K

2
��2�T

u�0
�2K−3

,

�23�

where B�x ,y� is the beta function. This is a valid expression
provided that a perturbation expansion in �ps and GA is pos-
sible. At finite temperatures, the effect of these couplings can
be incorporated by replacing the bare parameters by the
renormalized ones obtained from the integration of the RG-

flow equations �Eqs. �15�–�18�� up to a scale29 �−1�l�
=u�l� /2�T.

Our results are shown in Fig. 2, where we calculate ��T�
normalized to the “high-temperature” value T0=�0 /u, fixed
by the short-time cutoff of the theory. According with our
estimations �see Sec. IV�, we analyze only the local regime
��l���N

−1. We start with the initial conditions K�0�
=2.1, �̃ps�0�=10−3, for G̃A�0�=0 �solid line in Fig. 2�. For
comparison, we show the �T /T0�2K�0�−3 behavior predicted
for the resistivity due to phase slips in the absence of dissi-
pation effects �dot-dashed line�.29,30,33

Interestingly, starting the RG flow with the initial values

G̃A�0�=0.01, 0.05, 0.1, and 0.2, the resistivity decreases
faster than the �T /T0�2K�0�−3 law corresponding to the iso-
lated wire. This illustrates the stabilizing effect of dissipation
on superconductivity, which manifests itself through an in-
crease in the stiffness K, as can be seen from Eq. �15� when

parameter G̃A dominates over �̃ps. Note that since the inte-
gration of the renormalization-group flow �and consequently,
the calculation of the resistivity� is perturbative, it cannot be

carried beyond a point where either G̃A�l� or �̃ps�l� become
of order unity.

IV. DISCUSSION AND SUMMARY

The result of the RG flow Eqs. �15�–�18� together with the
analysis in the strong-coupling regime, summarized in Eqs.
�21� and �22�, suggest that a weak coupling to the metallic
film favors a superconducting ground state with long-range
order of the order parameter at T=0, through a dissipation-
induced quench of phase fluctuations.

Note that this is not trivial since a strong coupling to a
disordered metallic film is detrimental to superconductivity
and lowers Tc through the well-known proximity effect.46

But in a low-dimensional situation at T�Tc, where phase
fluctuations are the dominant mechanism of destruction of
global phase coherence, the environment actually favors
long-range order.

FIG. 2. �Color online� Normalized resistivity vs T /T0. As the

�dimensionless� Andreev conductance G̃A is increased, the wire re-
sistivity � �T� deviates from the law �T2K−3 predicted for an iso-
lated wire �Refs. 29, 30, and 33� as a consequence of the
dissipation-induced increase in the stiffness K �cf. Eq. �15��.
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This picture is supported by experiments on disordered
granular Pb films coated with a thin Ag metallic film,49

where it was shown that while Tc decreases due to the prox-
imity effect, phase stiffness actually increases at low enough
temperatures. Also in the context of dissipative Josephson
junctions arrays, it is well known that the existence of cou-
pling to a normal metal stabilizes the superconducting
phases.7–11

A similar idea has been recently suggested to produce an
enhancement of Tc in bilayered materials50 in which one
layer has a high pairing scale but low superfluid density
while in the other layer the situation is the inverse. When
both materials are put into contact, the Tc of the coupled
system is higher than those of the isolated layers. In the
specific case of Luttinger liquids coupled to dissipative
baths, our results are in agreement with recent theoretical
works where the existence of superconductive long-range or-
der at T=0 has been suggested.17,18

In this paper, we have presented a rigorous study of a
realistic dissipative mechanism, provided by a coupling to a
diffusive metal, in the context of superconducting wires. Of
central importance in our analysis is the cooperon propagator

kernel P̃c�x−x��, which couples the field � at the space-time
coordinates x and x� in the dissipative term SA �cf. Eq. �11��.
The physics of the kernel P̃c�x−x�� strongly depends on the
relation between �N�T�, the coherence length in the diffusive
film, and the length of the wire L. Consequently, two regimes
of interest appear: the local regime �N�T��L, where the cou-
pling of phases is purely local in space and nonlocal in time;
and the nonlocal regime �N�T��L, where the phase coupling
is nonlocal both in space and time. At this point, it is inter-
esting to determine to which regime actual superconducting
wires would correspond. At the experimentally relevant tem-
perature T�1K and using typical values of D in clean me-
tallic films51 D�102 cm s−1, we obtain the estimate
�N�1K��0.1 
m. On the other hand, the temperature con-
straints to observe nonlocal effects can be compactly written
as LT�T��L��N�T�. These conditions require that T�TNL

�u2 /kBD �where units have been restored� while the length
has to be kept smaller than �N�T�. Estimating the velocity of
the Mooij-Schön as u�105 m s−1 for the wires in Ref. 22,
we obtain TNL�10–100 K, which exceeds the bulk-Tc val-
ues estimated in the range 6.9–7.1 K in In-Pb films.23 The
above estimates show that spatial nonlocal effects are elusive
in actual wires �e.g., such as those studied in Ref. 27, where
L�10–100 
m� but may eventually be observed in super-
conducting wires with higher Tc, coupled to very clean sub-
strates.

In order to make contact with recent transport
experiments,22–24,27,31 we have calculated the linear dc resis-
tivity of a wire weakly coupled to a diffusive film for differ-
ent values of the Andreev conductance GA. The results of
Fig. 2, calculated for the local regime �N�T��L, suggest that
signatures of the predicted long-range order phase at T=0
could be observed experimentally. Indeed, since the dissipa-
tive term SA renormalizes the superconducting stiffness K to
higher values as the temperature decreases �cf. Eq. �15��,
sizable deviations from the predictions for an isolated
wire29,30 ��T��T2K�0�−3, where K�0� is the bare stiffness,

could be achieved at low enough temperatures.
In summary, we have studied a thin superconducting wire

weakly coupled to a metallic film, focusing on the details of
dissipation provided by the metallic cooperons at low tem-
peratures. We have studied the phase diagram at T=0 within
the framework of renormalization group and a variational
harmonic approximation. We predict a quantum phase tran-
sition toward a superconductor with long-range order at T
=0 as a function of the Andreev conductance GA and the
superconducting stiffness K of the wire. Finally, we show
that some signatures of this ordered phase could be observed
in experiments of transport, manifested as an increase in the
superconducting stiffness and consequently the exponent of
��T��T at low temperatures.
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APPENDIX

1. Cooperon propagator

In this section we derive the expression for the cooperon
propagator assuming weak disorder in the metallic film. We
refer the reader to Ref. 43 for further details.

When evaluating averages over the disorder potential in
Eq. �8�

Pc�r − r�,
 − 
�� 
 
g2D�r,r�;
 − 
��g2D�r,r�;
 − 
���d

a diagrammatic series �ladder diagrams� is constructed upon
the repeated action of the Dyson’s equation �in operator no-
tation�

ĝ2D = ĝ2D
0 + ĝ2D

0 V̂ĝ2D,

where ĝ2D
0 is the unperturbed electron Green’s function in the

otherwise perfect metal and ��r−r��V�r�= 
r�V̂�r�� is the
�static� disorder potential which verifies


V�r��d = 0, �A1�


V�r�V�r���d = niV2��r − r�� , �A2�

where ni is the concentration of impurities and V is the uni-
form component of V�r� in Fourier space. The diagrammatic
series in Fourier space representation is given by �cf. Ref.
43�

Pc�Q;n,m� =
Pc

0�Q;n,m�

1 −
niV2

�
Pc

0�Q;n,m�
,

where

Pc
0�Q;n,m� 
 �

p
g2D�p,i n�g2D�Q − p,i m�

and where � is the volume of the sample. Q=k+k� repre-
sents the center-of-mass momentum of the two electron sys-
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tem, and k and k� are the initial �i.e., before colliding with
impurities� momenta of the individual electrons. Defining

i�l 
 i m − i n,

!�Q;i n,i�l� 

niV2

�
Pc

0�Q;n,l + n� ,

the real-space representation of Pc reads

Pc�r,
� = � 1

	�
�2

�
Q=k+k�

�
n,l

e−i�2 n+�l�
eiQ·r

�

�

niV2!�Q;i n,i�l�

1 − !�Q;i n,i�l�
. �A3�

Using the definition of the mean-free path le
vF
e and the
definition of the elastic lifetime �in Born’s approximation�43

1


e

 2��2DniV2, �A4�

we obtain in the diffusive limit �Qle ,�l
e�1�,

!�Q;i n,i�l� � 1 − 
e���l� + DQ2� ,

where we have defined the diffusion constant in d spatial

dimensions D
 vF
2
e

d =
le
2


ed
. Replacing these results into Eq.

�A3� and noting that the contribution to !�Q ; i n , i�l� is van-
ishingly small for  n� n+�l��0, we obtain

Pc�r,
� � 2��2D
1

	
�
 n

e−i2 n


� � 1

	�
�
�l,Q

eiQ·re−i�l


��l� + DQ2�
 n� n+�l��0

. �A5�

In addition, and since the condition  n� n+�l��0 must be
fulfilled, we note that the limit ��l�
e→0 constrains the sum-
mation over Matsubara frequencies  n to values near  n�0.
Therefore, at low temperatures we find

Pc�r,
� = 2�2D
1

	�
�
�l,Q

sin���l�
�



eiQ·r

��l� + DQ2 .

We can generalize this expression to take into account pro-
cesses that break phase coherence �magnetic fields, magnetic
impurities, etc.�

Pc�r,
� = 2�2D
1

	�
�
�l,Q

sin���l�
�



eiQ·r

��l� + DQ2 + 
"
−1 ,

�A6�

where 
" is a phenomenological phase-breaking time. At T
=0 we can replace 1

	��l
→ 1

2��0
�d�. Then, the sum over Q in

Eq. �A6� yields for a 2D system

Pc�r,
� = Re� �2D

i
�2D
�

0

�

d�e��i
−
c�K0��� + 
"
−1

D
r�	 ,

where K0�x� is the zeroth-order modified Bessel function. r
=�x2+y2 is the distance in the x-y plane and 
c is an ultra-
violet cutoff in time to make the integral in � convergent,
and which we set 
c=
e. Finally we arrive at the expression
of the cooperon in Eq. �9�

Pc�r,
� =
�2D

2�2D
P̃c�r,
� , �A7�

where we defined

P̃c�r,
� = Re� ie−r/�Neir2/4D
̃��0,
ir2

4D
̃
�


̃2 � ,


̃ = 
 + i
e

and where ��# ,z� is the incomplete gamma function.

2. Expansion in terms of Legendre polynomials

In order to investigate the scaling dimensions of the bare

kernel P̃c in the nonlocal regime, we can use the approximate
expression of Eq. �10�

P̃c�x� �
�4D�2

x4 + �4D
�2

and express it in terms of cylindrical coordinates
�x=r cos � ,u
=r sin �� as

P̃c�x� = P̃c�r,�� �
�4D�2

rD
4

1

r̃2 f̃�r̃,�� , �A8�

where the definitions

f̃�r̃,�� 

1

r̃2 cos4 � + sin2 �
, �A9�

r̃ 

r

rD
, �A10�

rD 

4D

u
=

4vF

u
le �A11�

have been used and where vF is the Fermi velocity in the

metallic film. We now expand f̃�r̃ ,�� in Legendre polynomi-
als in order to separate radial and angular variables in a sys-
tematic way

f̃�r̃,�� = �
�=0

�

A��r̃�P��cos �� ,

where the coefficients are defined as

A��r̃� 

2� + 1

2
�

−1

1

d�cos �� f̃�r̃,��P��cos �� . �A12�

Then,
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P̃c�r,�� =
�4D�2

rD
4

1

r̃2 �
�=0

�

A��r̃�P��cos �� . �A13�

Changing variables to  
cos �, we can write Eq. �A12� as

A��r̃� =
2� + 1

2
�

−1

1

d P�� � f̃�r̃, �

=
2� + 1

2
�

−1

1

d 
P�� �

r̃2 4 −  2 + 1
. �A14�

An asymptotic approximation of A��r̃� in the regime r̃→�
gives

lim
r̃→�

A��r̃� →
2� + 1

2
P��0��

−1

1

d 
1

r̃2 4 + 1
,

→
2� + 1

2
P��0�

�

�2r̃
�A15�

where from the Rodrigues formula52 we obtain P��0�
= �−1��/2

2�

�!
���/2�!�2 for � even �note from Eq. �A14� that A��r̃�

vanish for odd values of ��. Therefore, from Eqs. �A13� and
�A15� we obtain in the asymptotic limit

P̃c�r,�� →
r→�

�

�2

�4D�2

rD
4

1

r̃5/2 �
�=0

�
2� + 1

2
P��0�P��cos �� ,

→
r→�

�

�2

�4D�2

rD
4

1

r̃5/2��cos �� ,

where in the last line the expansion of the Dirac-delta func-
tion in terms of the Legendre polynomials has been used.
Coming back to coordinates x and 
, we obtain

P̃c�x� →
r→�

��4D
�2

��x�

3/2 ,

which provides a rigorous derivation of Eq. �14�.
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